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Fast Kawasaki spin exchange limit of spin-facilitated kinetic Ising models
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We study a Fock-space operator technique for describing the stochastic kinetics of a spin-facilitated kinetic
Ising model. We focus in particular on the diffusi@fast Kawasaki exchangdimit in which the kinetics can
be described by a single mean field evolution equation. We derive some general criteria for the approximative
validity of mean field theory for the case of a nondiverging diffusion coefficient of the local spin states.
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A central topic in statistical physics is the qualitative andstrictions which lead inevitably to cooperative rearrange-
quantitative understanding of long-time phenomena imments in the underlying spin system.
strongly interacting many-body systems. They exhibit an ex- Identifying the up state as a molecule of compon®and
treme slowing down without long range ordered states othe down state as a molecule of tyBethe S/ f,d] can be
other singular behavior of spatial quantities in contrast to thénterpreted as a reversible autocatalytic chemical reaction
critical slowing down of conventional phase transitions.fA+B = (f+1)A on a d-dimensional lattice. A particle
Such phenomena are characterized by a high cooperativity hanges its constitution fror to B andB to A only in the
local processes. For a large class of dense systems sorREesence of at leas$h molecules in the nearest environment.
essential properties of the slowing-down regime, e.g., a norPécause of the slow dynamics of tf,d], it can be used
exponential decay of autocorrelation functions at sufficiently!® model a glasslike behavior in a simple manfer9]. _
long times or a non-Arrhenius temperature dependence of !N this paper we study the influence of an additional dif-

relaxation times, seem to be universal or are at least a chal2Sionlike nonactivated Kawasaki spin exchange between

acteristic feature. For instance, such scenarios have been Orﬂ)garest nelghbc_)rs. S uch a process c_orresponds tq diffusion
ith a certain diffusion coefficienD,,, in the above intro-

served for the main glass transition process in supercoole uced chemical pictur&+ B — B+ A. The additional dif-

I|qU|ds._ . . L . fusion leads generally to an acceleration of the dynamics. It
In this connection, facilitated kinetic spin systems belongis well known that a sufficiently large diffusion coefficient

to an interesting class of nonequilibrium models, which show . the application of the kinetic theory for chemical pro-
a typical slowing down of the dynamics caused by an in-

. o e ) cesses. On the other hand, this classical theory of reaction-
creasing cooperativity of local spin-flip processes with dejtfysjon systems frequently breaks down in low dimensions
creasing temperature. In this context our interest in theynd also for small diffusion coefficients. The aim of this

present paper is especially focused on studyingftsgin-  paper is a discussion of the dynamical regimes that may be
facilitated kinetic Ising model§1-3], originally introduced  expected for our modifiedy f,d].

by Fredrickson and Andersen. These models are formulated For our analytical treatment we use the Fock-space for-
ond-dimensional lattices. Each lattice poing characterized malism, which is a very powerful method for analyzing clas-
by a spin variabler; with two possible states;=*1. The sical many-body systems with a stochastic dynamic given by
set of all observablesr={c;} forms a configuration. The a master equation on a lattice. The Fock-space approach is
underlying dynamic of thef-spin-facilitated kinetic Ising based on a quantumlike formulation of the underlying master
models is a stochastic one, which is given by a simpleequation written in terms of creation and annihilation opera-
Glauber proces$4], i.e., a spin flipo;=+1<o0;=—1 is  tors. The Fock-space representation of the modiggdd]
controlled by the thermodynamic Gibbs measure and by selwill be more transparent, interpreting the two spin orienta-
induced topological restrictions. In particular, the topologicaltions ;= —1 ando;=1 as empty and single occupied sites
conditions are explicitly taken into account so that an el-corresponding to the restricted occupation numhbgrsO
ementary flip at a given lattice points only allowed if the andn;=1 viao;=2n;—1, respectively. Th&[ f,d] can then
number of the nearest neighbored lattice points in the spin upe interpreted as a lattice gas with an excluded volume ef-
state ;= +1) is equal to or larger than a restriction numberfect, i.e., changes of the configuratios={n;} are possible

f with 0<f<z(z is the coordination number of the lattice only under the presence of the exclusion principle. Following
Such model§1-3,5 are denoted a&spin-facilitated Ising Refs.[10-15, the probability distributiorP(n,t) can be re-
models on ad-dimensional lattice, shortened & f,d]. In lated generally to a state vectd#(t)) in a Fock space ac-
the original model, Ising spins on different lattice sites arecording toP(n,t)=(n|F(t)) and|F(t))=X=,P(n,t)|n), re-
coupled only via kinetic constraints, i.e., there are no pairspectively, where the base vectors) are composed of
interactions between neighbor spins. In this way, elementargecond quantized operators. Using this representation, the
single spin-flip processes are connected with geometrical rdime evolution in terms of a master equation can be trans-
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formed to an equivalent evolution equation in a Fock-spaceion (s|L=0. Because of Eqs(1) and (5) the evolution
equation for an arbitrary operat8(t), for example the par-
a|F())=L|F(1)). (D) ticle number operator, is given Hy9]

The dynamical matrixL(n,n") of the master equation is 9(B)Y=(s|[B,L]|F (1)) 6)
mapped onto the operatar=L(a,a’), which is given in a ! ' '
second quantized form with anda’ being the annihilation  \hich can be extended immediately in order to write down
and creation operators, respectively. Originally, this transfortne kinetic equations for time-dependent correlation func-
mation was applied for the Bose case with unrestricted Octions. As a general result of the procedure, all the dynamical
cupation number$10-12. Here, we consider the case of gquations describing the classical problem are completely
restricted occupation numbefrs3—-15. In order to preserve getermined by the commutation rules of the underlying op-
the restriction of the occupation number in the underlyingerators and the structure of the evolution operatoThus,
dynamical equations, the commutation. rules of the operatorgis method allows investigations of master equations for
aanda’ are chosen as those of Pauli opera{d3,16,17  yarious evolution processes, e.g., aggregation, chemical re-
with the commutation rules actions[14,15, nonlinear diffusior{20], as well as the spin-
facilitated kinetic Ising models. Note that the decisive advan-
[ai.a]]=0;(1-2afa), [a,a]=[a,a/]=0, tage of the Fock-sp%ce approach is given by the simple
construction principles for each evolution operatoon the
basis of creation and annihilation operatfi2g].
Using Eg. (6) with the Liouville operator L=Lg
Lk, the evolution equation for the averaged particle num-
er operator reads

a’=(a/)?=0. 2

The master equation of the origing| f,d] without Ka-
wasaki spin exchange can be expressed by the followin
evolution operatof18]:

1 d(Ni)=M(E[N]) = (E{[NIN;)) = B(Ei[NIN;)
LSFM:Z ﬁk 2 ‘ Kikl"'kaklNkz"'Nkf] t

-------

+D >, O[(Nj)—(N;)] @
X[B(ai—N)+N@—(1-N))] 3 J

with the particle number operatét;=a'a; and temperature  With
dependent jump rates for the flip | — 1 and 8>\ for the 1
inverse process. The temperature is defined by the ratio of E[N]=— >, Kifk,- .k Ni Nic - - Ni
the jump ratesT~[In(B/\)] L. The inner terms of the square g v e
brackets in Eq(3) represent a single spin-flip process on the
lattice sitei and the product of the particle number operatorsUnfortunately, this equation contains higher moments of
NN Ny Considersi Ny local constraints. Additon- SRR B T80 280 108 e iaher cortelations .. one
ally, Kij,...; 1S @ lattice function Wlthk”kl'j'kf_l ki Obtains an infinitely large hierarchy of evolution equations.
7ky7 - #kpandallk, (¢=1, ... f) are neighborstolat- gt in the case of a diverging diffusion coefficiemt,
tice sitei, andij,..., =0 otherwise. — o, the strong mixing of up and down spins resyizg] in
Consideration of the Kawasaki spin exchange process rehe decoupling of higher correlation@;N;)—(N;}(N;),
quires an additional contribution to the evolution operatorand a homogenization of the local spin distributicfié;)

(3): —N. Thus, the homogeneous magnetization2N— 1 sat-
isfies the mean field equation

®

.
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—(1=N)N;] ) o\t

with the lattice function®;;=1 if i andj are neighboring with z the coordination number of the lattice. The equilib-

lattice sites an®;; =0 otherwise. In principle, as was shown rjum state is given by?eq:()\_lg)/(lg+ \). A small fluc-
first by Doi[10], the average of an arbitrary physical QUaN-4 1ation So= o — oo, approaches equilibrium exponentially
tity B(n) is given by the average of the corresponding op- — cd

eratorB(t) = =,/ n)B(n)(n| via [19] do=exp(—t/7) with the relaxation time
2\ T+t
(B(1))= 2 P(n,t)B(n)=(s|B|F(t)) (5) =l¢ T (10

using the reference state| ==, (n|. The normalization con- whereas large fluctuations relax with an algebraic inverse
dition is manifest in(s|F(t))=1 with the consequendd9]  power law int. In particular, the low temperature limit/ 8
that the evolution operator always fulfills the necessary rela—0 is defined by a purely algebraic decay
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_ z\ 17U reaction have very many contacts among each other before a
o+1=21p f t ~t (11)  contact with anotheA particle occurs. However, the mean
field concept requires a lot of contacts with differénpar-
which remains after the passing of the initial regime. ticles. Finally, the limit of high concentrationrd—1 leads

The decoupling of the higher moments to break up thdandependently of the dimension to the conditibR(B8—\)
infinite hierarchy of evolution equations holds for large dif- >1.
fusion coefficientsDy . This decoupling procedure may be It should be remarked that for slow spin exchange pro-
reasonable though to describe small fluctuations from equicessedD has to be replaced by« considering that com-
librium, because the Hamiltonian of both the original and thepinations of annihilation and creation processes contribute
modified § f,d] is that of a simple paramagnetic gas. Thus,a|so to an effective diffusion in the autocatalytic particle pic-
the decoupling remains valid at equilibrium and we have toyre, This thermally activated effect is of the order of mag-
deal with(N;N;)=N?+N(1—N) ;. Similar arguments can nitude of the ratex and can be neglected in the previous
be used at sufficiently high temperatures, i.e., for3.  scaling arguments. The inequality becomes independent of
However, far from equilibrium and at sufficiently low tem- N

rion for the application of the mean field equati® to the
modifiedS[ f,d]. The dynamics of this model can be mapped
onto the autocatalytic picture introduced above. Here, th

relaxation into the equilibrium is mainly determined by dif- ical slowi f th .
fusion processeA+B=B+A and the annihilation and cre- /5 We observe a typical slowing down of the dynamics

ation processes ¢ 1)A— fA+B. To determine the survival Which may be explained by other approaches, for example
rate of A particles within a mean field approximation, note M0de coupling techniqueg@3] or field theoretical perturba-
that in a lifetimet, eachA particle will succesfully encounter tion theorieg[24].

a site with at leasf neighbor sites occupied b4 particles. In particular, forf =1, scaling arguments can be used also
Consequently, in a timat~t, the concentration decrement for the derivation of the correct decay outside the mean field

regime. TheS1,d] corresponds to the biparticle reactions
A+A=A+B and diffusion stepsA+B=B-+A. Equilib-
rium will be reached for temperatufie>0 independently of
IJN AN _ the diffusion coefficienDy . For T=0 andDx=0 the dy-
W“EN—EN—(B—MNP” (120 namics stops at a nonergodic phase while Bgr>0 the
S 1d] relaxes into the ordered equilibrium state defined by
and we obtaint, ~(8—\)"IN~'. During this time, anA o= —1. The approach into the nonergodic state can be dem-
particle has visited a volum¥, . On the other hand, the onstrated by the rigorous res(it8]; in this connection see
mean field approach is valid, if each particle visits a lot ofalso[25] for d=1. For instance, the decay of the ordered
possible reaction centeffattice sites withf A particles in phase;: 1 is given by;(t)zz exgexp(—pt)—1}—1. In the
their nearest environmenbefore the autocatalytic reaction |ong-time limit this results in a pronounced slowing down,
takes place. The concentration of such centefdfisThus, leading to a nonergodic behavior which is manifested in that
the condition for an application of the mean field approachtor t— the quantity o(t) remains finite with o()
readsV| N> 1. If £2 is the mean square displacement of an=2e"1—1.
A particle within its lifetime,£€2~Dyt, , the visited volume The behavior of the modifie8[ 1,d] with D,>0 and for
is given byV, ~¢? for d<2, Vi ~&In¢ for d=2, and  T=0 s similar to a single species coalescence model corre-
Vi~Dxiy for d>2. These relations- follow from the fagt that sponding to a reversible diffusioh+B=B+A and an irre-
the trajectory of a random walker is compact tb&2, i.€.,  versible annihilationA+A—A+B with active particlesA
the particle visits almost all sites inside a sphere of radius  anq passive particles. For high concentrations &, i.e., for
Ford>2, diffusion trajectories are noncompact and the visy N lassical field . SOt /
ited volume is proportional to the length of the path, i.e., arge N a cgssma mean Tield regime may.eX|s K B_ .
V,~Dyt. Hence, ford<2 the mean field approch is valid if >N"1. As discussed above, Efter the passing of the inital
. . regime, the decay is given byi~t~1. This reaction con-
Dyt ~Dy(B—N\) N~ > g2~ N~21d (13)  trolled regime holds for intermediate times as long tas
o <D/pB. For longer times the system undergoes a crossover
i.e., the conditiorD(B8—\)>N1~2d must be satisfied if to the diffusion controlled regime. The decay of this regime
a mean field approach is to make sense.ds2, we obtain  can be obtained also from scaling arguments. Because of the
independently from the concentration the resllii(B8  recurrence of random walks fat<2 the numbem of vis-
—)\)>1 while for d=2 the conditionD(8—\)>—fInN ited lattice sites is given byn~t%? for d<2 andm-~t for
has to be taken into account. The failure of the mean field>2. At the critical dimensiomi=2 one obtains a logarith-
theory for low concentrations anti< 2 follows from the fact ~ Mic correctionm~t/Int. On the other hand, each active par-
that thef + 1 A particles involved in one possible elementary ticle occupies a volum&~N~1. Thus, a reaction between

ation behavior is then characterized by an algebraic decay far
from equilibrium, whereas an exponential decay dominates
Ft‘\he small fluctuations from the equilibrium state. FHoi

of a large fluctuatiolA N will be of orderN. Using this gives
the mean field rate equation
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two active particlesA occurs if V~m and we obtainN
~t~92 for d<2 andN~Int/t for d=2. Above the critical 10°4

dimension we obtaitN~t 1,

Numerical simulations within th&§[ 1,1] starting from the
ordered spin up phase support these arguments; see Fig.
The initial regime can be fitted very well by the above men-
tioned solution[18]. For a slow spin exchange, the pro- &

nounced pIateaN= e ! indicates a metastable nonergodic
state. This nonergodic phase decays due to the spin exchant
dynamics. The asymptotic decay is determined by the ex-

pectedt ~ 2 behavior. A classical regime witi=t~* can be

observed as an intermediate regime beween the initial deca

and thet 2 law only for fast Kawasaki processes. 10° 10* 10° 10% 10" 10° 10' 10° 10° 10° 107 107 10°
In the case of finite but small temperatures we obtain a t/(1+D/A)

similar behavior. But here, the asymptotic behavior of the FIG. 1. Mean particle numbeN versust/(1+DX"1) for T

equilibrium state. This behavior gradually dominates theSPins the decay follows & ! law. For smaller diffusion coefficient

-1

other regimes with increasing temperature.

We have pointed out the remarkable simplification in the

the decay follows the™ Y law. As one goes from left to right in this
figure the diffusion coefficient decreases.

description of lattice reaction-diffusion processes in the limitcability in limiting cases of the mean field theory for large
of an infinitely large diffusion coefficient. In effect the infi- but finite diffusion coefficient.

nite hierarchy of evolution equations for the coupled occu-
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